# Tritium Diffusion Posterior ## Overview In this benchmark, we use [Achlys](https://github.com/aurora-multiphysics/achlys) to model the macroscopic transport of tritium through fusion reactor materials using the Foster-McNabb equations. Achlys is built on top of the [MOOSE Finite Element Framework](https://mooseframework.inl.gov/). The aim of this benchmark is to compute the (unnormalised) posterior density of the input parameters given the experimental data of [Ogorodnikova et al. (2003)](https://doi.org/10.1016/S0022-3115(02)01375-2). ## Authors - [Mikkel Lykkegaard](mailto:mikkel@digilab.co.uk) - [Anne Reinarz](mailto:anne.k.reinarz@durham.ac.uk) ## Run ``` docker run -it -p 4243:4243 linusseelinger/benchmark-achlys:latest ``` ## Properties Model | Description ---|--- posterior | Posterior density forward | Forward model ### posterior Mapping | Dimensions | Description ---|---|--- input | [5] | E1, E2, E3: The detrapping energy of the traps. n1, n2: The density of the intrinsic traps. output | [1] | Log posterior density ### forward Mapping | Dimensions | Description ---|---|--- input | [5] | E1, E2, E3: The detrapping energy of the traps. n1, n2: The density of the intrinsic traps. output | [500] | Flux of tritium across the boundary as a function of time in atomic fraction. Feature | Supported ---|--- Evaluate | True Gradient | False ApplyJacobian | False ApplyHessian | False Config | Type | Default | Description ---|---|---|--- None | | | ## Mount directories Mount directory | Purpose ---|--- None | ## Source code [Model sources](https://github.com/aurora-multiphysics/achlys) ## Description 1. The prior distributions of input parameters $\theta = E_1, E_2, E_3, n_1, n_2$ are all uniform: - $E_1 \sim \mathcal U(0.7, 1.0)$ - $E_2 \sim \mathcal U(0.9, 1.3)$ - $E_3 \sim \mathcal U(1.1, 1.75)$ - $n_1 \sim \mathcal U(5 \cdot 10^{-4}, 5 \cdot 10^{-3})$ - $n_2 \sim \mathcal U(10^{-4}, 10^{-3})$ 2. The following parameter to data map is assumed: - $d = \mathcal F(\theta) + \varepsilon$ with $\varepsilon \sim \mathcal N(0, \sigma^2)$. Accordingly, the likelihood of the data given the input parameters is modelled as a Gaussian. 3. The log-posterior is returned as the sum of the log-prior density and the log-likelihood.